Теплоемкость

Измерение удельной теплоемкости твердого тела

Удельную теплоемкость твердого тела можно измерить с помощью устройства типа ATD ( термодифференциальный анализ ) или DSC ( дифференциальная сканирующая калориметрия ). Его можно определить следующим образом: когда система переходит от температуры T к температуре T + d T , изменение внутренней энергии системы d U связано с теплообменником δQ в соответствии с:

dUзнак равноδQ-пеdV{\ displaystyle dU = \ delta Q-p_ {e} dV}

где p e — внешнее давление, которому подвергается система, и d V — изменение объема. Если V = cte:

dUзнак равноδQvзнак равноПРОТИВvdТ{\ displaystyle dU = \ delta Q_ {v} = C_ {v} dT}

С другой стороны, если преобразование является изобарным (постоянное давление), с помощью функции энтальпии системы получается соотношение:

dЧАСзнак равноδQ+Vdп{\ Displaystyle dH = \ дельта Q + Vdp}

Если P = cte

dЧАСзнак равноδQпзнак равноПРОТИВпdТ{\ Displaystyle dH = \ дельта Q_ {p} = C_ {p} dT}

с C p емкость при постоянном давлении. Таким образом, измерение заключается в измерении разницы температур, создаваемой данным теплообменом, где поток энергии приводит к разнице температур.

Следующая диаграмма иллюстрирует инструментальную технику, использованную в случае первого метода (измерение разницы температур).

Схема устройства для измерения теплоемкости.

Устройство состоит из двух независимых «шпилек» и духовки. Из термопар для измерения температуры верхней поверхности колодки в контакт с образцом и температурой печи. Это соответствует температуре измерения. Все измерения выполняются с использованием пустого алюминиевого держателя образца на одной из подушек. Первое измерение другого пустого алюминиевого держателя образца позволяет получить базовую линию (в зависимости от измерения температуры термопарами). Затем измерение эталонного образца с известной удельной теплоемкостью позволяет откалибровать устройство. Наконец, образец в форме порошка измеряется, и его удельная теплоемкость получается путем сравнения с теплоемкостью эталонного образца. Для повышения точности измерения следует учитывать разницу в массе между двумя держателями образцов, если это применимо (поправка выполняется с использованием удельной теплоемкости алюминия). Основной источник ошибок — качество теплового контакта между подушечкой и держателем образца.

Формулы изохорной и изобарной теплоемкостей воздуха

Сначала рассмотрим изохорную величину. Обозначим ее CV. Первое начало термодинамики, которое следует из закона сохранения энергии, для изохорного процесса выглядит следующим образом:

То есть все тепло H, подводимое к системе, идет на увеличение ее внутренней энергии. Изменение величины U можно записать так:

С другой стороны, если воспользоваться универсальным уравнением состояния идеальной газовой системы, то формула для dU запишется в виде:

Здесь z — количество степеней свободы молекул, n — количество вещества, R — постоянная, dT — изменение температуры. Выражение выше следует из того факта, что внутренняя энергия идеального газа в точности равна кинетической энергии его молекул.

Из сравнения двух равенств получаем формулу для изохорной теплоемкости:

В случае воздуха z=5, поскольку он на 99 % состоит из двухатомных молекул азота и кислорода (двухатомные молекулы имеют 3 поступательные и 2 вращательные степени свободы). Полагая n=1 моль, приходим к формуле изохорной молярной теплоемкости воздуха:

Напомним, что постоянная R равна 8,314, тогда CV = 20,785 Дж/(моль*К).

Теперь определим молярную изобарную теплоемкость воздуха. Поскольку в результате изобарного нагрева газ расширяется, то он выполняет некоторую работу. Первое начало термодинамики в этом случае принимает вид:

Энтальпия H через изобарную теплоемкость CP для 1 моль вещества запишется так:

Работу газа с использованием уравнения Клапейрона-Менделеева можно записать так:

Эти выражения позволяют записать следующее соотношение изобарной и изохорной теплоемкостей:

Подставляя величину CV для воздуха, получаем изобарную молярную теплоемкость для него:

Таким образом, величина CP оказывается больше, чем CV.

Изопроцессы в газах

Определение 2

Чаще всего рассматриваются два значения теплоемкости газов: 

  • CV являющаяся молярной теплоемкостью в изохорном процессе (V=const);
  • Cp представляющая собой молярную теплоемкость в изобарном процессе (p=const).

При условии постоянного объема газ не совершает работы: A=. Исходя из первого закона термодинамики для 1 моля газа, можно сказать, что справедливым является следующее выражение: 

QV=CV∆T=∆U.

Изменение величины ΔU внутренней энергии газа прямо пропорционально изменению значения ΔT его температуры.

В условиях процесса при постоянном давлении первый закон термодинамики дает такую формулу: 

Qp=∆U+p(V2-V1)=CV∆T+pV.

В котором ΔV является изменением объема 1 моля идеального газа при изменении его температуры на ΔT. Таким образом, можно заявить, что: 

Cp=Qp∆T=CV+p∆V∆T.

Из уравнения состояния идеального газа, записанного для 1 моля, может выражаться отношение ΔVΔT: 

pV=R.

В котором R представляет собой универсальную газовую постоянную. При условии постоянства давления p=const, можно записать следующее:p∆V=R∆T или ∆V∆T=Rp.

Определение 3

Из этого следует, что выражающее связь между молярными теплоемкостями Cp и CVсоотношение имеет вид (формула Майера): 

Cp=CV+R.

В процессе с неизменным давлением молярная теплоемкость Cp газа всегда превышает молярную теплоемкость CV в процессе с не подверженным изменениям объемом, что демонстрируется на рисунке 3.10.1.

Рисунок 3.10.1. Два возможных процесса нагревания газа на ΔT=T2 –T1. При p=const газ совершает работу A=p1(V2 – V1). Поэтому Cp>CV.

Определение 4

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом занимает важное место в термодинамике и обозначается в виде греческой буквы γ. 

γ=CpCV.

Данное отношение включено в формулу для адиабатического процесса.

Между двумя изотермами, обладающими температурами T1 и T2 на диаграмме (p, V) реальны различные варианты перехода. Так как для всех подобных переходов изменение величины температуры ΔT=T2 –T1 является одним и тем же, выходит, что изменение значенияΔU внутренней энергии тоже одинаково. С другой стороны, совершенные при этом работы A и количества теплоты Q, полученные в результате теплообмена, выйдут разными для различных путей перехода. Из этого следует, что газа имеет относительно приближенное к бесконечности число теплоемкостей. Cp и CV представляют собой частные, однако, очень важные для теории газов, значения теплоемкостей.

Рисунок 3.10.2. Модель теплоемкости идеального газа.

Определение 5

Термодинамические процессы, в которых теплоемкость газа не подвергается изменениям, носят название политропических.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Каждый изопроцесс являются политропическим. В изотермическом процессе ΔT=, из-за чего CT=∞. В адиабатическом процессе ΔQ=, выходит, что Cад=.

Замечание 1

Стоит обратить внимание на то, что «теплоемкость» и «количество теплоты» являются крайне неудачными терминами, доставшимися современной науке в качестве наследства теории теплорода, которая господствовала в XVIII веке. Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества

Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла

Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества. Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла.

Удельная, молярная и объёмная теплоёмкости

Очевидно, что чем больше масса тела, тем больше требуется теплоты для его нагревания, и теплоёмкость тела пропорциональна количеству вещества, содержащегося в нём. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоёмкости (теплоёмкости единицы массы тела):

c=Cm{\displaystyle c={C \over m}}

и молярной теплоёмкости (теплоёмкости одного моля вещества):

Cμ=Cν,{\displaystyle C_{\mu }={C \over \nu },}

где ν=mμ{\displaystyle \nu ={m \over \mu }} — количество вещества в теле; m{\displaystyle m} — масса тела; μ{\displaystyle \mu } — молярная масса. Молярная и удельная теплоёмкости связаны соотношением Cμ=cμ{\displaystyle C_{\mu }=c\mu }.

Объёмная теплоёмкость (теплоёмкость единицы объёма тела):

C′=CV.{\displaystyle C’={C \over V}.}

Плотность воздуха в зависимости от температуры

Представлена подробная таблица значений плотности воздуха в сухом состоянии при различных температурах и нормальном атмосферном давлении. Чему равна плотность воздуха? Аналитически определить плотность воздуха можно, если разделить его массу на объем, который он занимает
при заданных условиях (давление, температура и влажность). Также можно вычислить его плотность по формуле уравнения состояния идеального газа . Для этого необходимо знать абсолютное давление и температуру воздуха, а также его газовую постоянную и молярный объем. Это уравнение позволяет вычислить плотность воздуха в сухом состоянии.

На практике, чтобы узнать какова плотность воздуха при различных температурах
, удобно воспользоваться готовыми таблицами. Например, приведенной таблицей значений плотности атмосферного воздуха в зависимости от его температуры. Плотность воздуха в таблице выражена в килограммах на кубический метр и дана в интервале температуры от минус 50 до 1200 градусов Цельсия при нормальном атмосферном давлении (101325 Па).

t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-50 1,584 20 1,205 150 0,835 600 0,404
-45 1,549 30 1,165 160 0,815 650 0,383
-40 1,515 40 1,128 170 0,797 700 0,362
-35 1,484 50 1,093 180 0,779 750 0,346
-30 1,453 60 1,06 190 0,763 800 0,329
-25 1,424 70 1,029 200 0,746 850 0,315
-20 1,395 80 1 250 0,674 900 0,301
-15 1,369 90 0,972 300 0,615 950 0,289
-10 1,342 100 0,946 350 0,566 1000 0,277
-5 1,318 110 0,922 400 0,524 1050 0,267
1,293 120 0,898 450 0,49 1100 0,257
10 1,247 130 0,876 500 0,456 1150 0,248
15 1,226 140 0,854 550 0,43 1200 0,239

При 25°С воздух имеет плотность 1,185 кг/м 3 .
При нагревании плотность воздуха снижается — воздух расширяется (его удельный объем увеличивается). С ростом температуры, например до 1200°С, достигается очень низкая плотность воздуха, равная 0,239 кг/м 3 , что в 5 раз меньше ее значения при комнатной температуре. В общем случае, снижение при нагреве позволяет проходить такому процессу, как естественная конвекция и применяется, например, в воздухоплавании.

Если сравнить плотность воздуха относительно , то воздух легче на три порядка — при температуре 4°С плотность воды равна 1000 кг/м 3 , а плотность воздуха составляет 1,27 кг/м 3 . Необходимо также отметить значение плотности воздуха при нормальных условиях. Нормальными условиями для газов являются такие, при которых их температура равна 0°С, а давление равно нормальному атмосферному. Таким образом, согласно таблице, плотность воздуха при нормальных условиях (при НУ) равна 1,293 кг/м 3
.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

Теплоёмкость для различных процессов и состояний вещества

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

Теплоёмкость идеального газа

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Молярная теплоёмкость при постоянном объёме:

CV=dUdT=i2R,{\displaystyle C_{V}={dU \over dT}={\frac {i}{2}}R,}

где R{\displaystyle R} ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная, i{\displaystyle i} — число .

Молярная теплоёмкость при постоянном давлении связана с CV{\displaystyle C_{V}} соотношением Майера:

CP=CV+R=i+22R.{\displaystyle C_{P}=C_{V}+R={{i+2} \over 2}R.}

Теплоёмкость кристаллов


Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

  • Закон Дюлонга — Пти и закон Джоуля — Коппа. Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
  • Квантовая теория теплоёмкостей Эйнштейна. Первое применение квантовых законов к описанию теплоёмкости.
  • Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом.

Связь между теплоемкостями при постоянном давлении и постоянном объеме.

Если предположить, что процесс протекает с постоянной Константа x, где x-означает любую постоянную пару Затем параметр, который делает то же самое рассуждение, что и раньше Получите специфическое отношение с предыдущим одним, специфической жарой Производная внутренней энергии по объему и объему Общая температура формы :

Сорок восемь Найдите другое выражение с внутренней энергией* Удельная мощность cf-идеальный газ cv.Полное изменение^ Внутренняя энергия равна сумме двух членов. Их первый (^r) dV обусловлен изменением силы Взаимодействие между молекулами, второй член / дю \、〜 \ dT) — изменение кинетической энергии молекулы. В идеальном газе силы взаимодействия Если молекула не существует, («Хтт /#у — у, а соотношение* Б, 11) упрощается: — ) ВДТ = cvdT. Б, 19.) В интегральном виде принимается соотношение B, 19) * Это выглядит так: У CyiTs-Т^,). Б, 20) Определите разницу в теплоемкости в идеале* Второй gas.In этот случай («^tr)= 0 и уравнение B, 17) Формат такой: (^) Б, 21) Том много твердых тел как резина, резина Резина, камень, etc. изменятся незначительно Повышение температуры.

Поэтому в практическом плане При расчете этих тел Cy = cp, то есть Теплоемкость при постоянном объеме равна теплу Теплоемкость при постоянном давлении.Металл и другое Другие объекты, объем которых в значительной степени зависит от температуры、 Это равенство несправедливо. у у (ДВ \ Мы нашли i-gjH из идеального уравнения состояния.

Подставляя для газа A, 6)и равенства B, 21), получаем: СР-СV = р. Б, 22) Формула B, 22) названа в честь Роберта Mayer. It есть Это показывает, что разница в теплоемкости (cp-cv) идеальна Идеальный газ-это постоянная величина, равная универсальной Универсальная Газовая Постоянная R 4 В. Ф. Ноздрев 49 Роберт Майер использовал уравнения. {2, 22) для определения механического эквивалента теплоты Жара. В термодинамике проблема удельной теплоемкости не является полным решением. Выяснить.

Современная теория теплоемкости была создана на основе Статистика физика и квантовая механика. Согласно теории идеального газа Где i-число степеней свободы, а k-постоянная Больцмана. И затем… ЧВ = МК) В: = Г-Б-23) Отношения B, 23)、 В статистической физике, теплоемкость » не зависит от температуры, а Зависит от количества степеней свободы только/.

Количество Степень свободы перевода равна 3, где* = 3-M’, где/’ — число Степени свободы вращения.Отсюда В. 24а.) .- Я±Дл * + : Изменяется ли число степеней свободы при повышении температуры? Температура?Квантовая механика отвечает на этот вопрос утвердительно.

Вы можете видеть, что при высоких температурах все еще присутствует вибрация Возникает колебательное движение атома в молекуле, то есть новая степень Свобода, так что выражение частного тепла в общем случае B, 24a) и B, 246) можно описать как: В. двадцать пять) Б, 26) Где c ’(T) — теплоемкость, связанная со степенью вибрации Бесплатный.

Например, для двухатомного газа, квантовая статистика дайте c ’(T): Ноль С (Т)=(±Г эж.Мистер.Б, 27) U) * Формула B, 25); и B, 26)、 Общий вид, предполагающий зависимость V от T Пятьдесят В B, 27) 9-характерная температура, равная-r -.Где h-это Постоянная Планка (/г = 6.624•ю〜27 эрг «С), К-Больцмана постоянная Манна(&= 1.38•10-23-<-1、co-собственная частота вибрации. Таким образом, как видно из B, 27), квантовая статистика Не только температурная зависимость теплоемкости、 Предсказать принципиально новое явление: неравномерность Распределение энергии

Аналитическая формулировка первого начала термодинамики. Применение первого начала термодинамики к некоторым термодинамическим процессам.
Методологическое значение первого начала термодинамики—закона сохранения и превращения энергии. Изобраический процесс.

СТАНДАРТНЫЕ СПРАВОЧНЫЕ ДАННЫЕ

Моноксид углерода жидкий и газообразный. Плотность, энтальпия, энтропия, изохорная и изобарная теплоемкости при температурах от 70 К до 500 К и давлениях до 100 МПа

Издание официальное

Москва Стандартинформ 2021

Предисловие

  • 1 РАЗРАБОТАН Главным научным метрологическим центром «Стандартные справочные данные о физических константах и свойствах веществ и материалов» (ГНМЦ «ССД»)

  • 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 180 «Стандартные справочные данные о физических константах и свойствах веществ и материалов»

  • 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 мая 2021 г. № 433-ст

  • 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. Nt 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (но состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gosi.ru)

Стацдартинформ. оформление. 2021

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и рас* пространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

1 Область применения

2 Нормативные ссылки

3 Общие положения

4 Расширенные неопределенности расчетных значений стандартных справочных данных

по свойствам моноксида углерода

Приложение А (обязательное) Основные физические параметры и коэффициенты уравнений для определения значений стандартных справочных данных по свойствам моноксида углерода

Приложение Б (обязательное) Таблицы контрольных стандартных значений термодинамических свойств моноксида углерода на кривой насыщения

Приложение В (обязательное) Таблицы контрольных стандартных значений термодинамических свойств моноксида углерода в однофазной области

Библиография

ж W

ж

Теплоемкости при постоянном давлении и постоянном объеме

При сообщении телу некоторого количества теплоты изменяется его температура (за исключением агрегатных превращений и вообще изотермических процессов). Характеристиками такого изменения являются различные теплоемкости: теплоемкость тела CT, удельная теплоемкость вещества c, молярная теплоемкость C.

Понятия теплоемкости тела и удельной теплоемкости рассмотрены тут.

Молярная теплоемкость C — величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

\(~C = \frac{Q}{\nu \Delta T} . \qquad (1)\)

Единицей молярной теплоемкости в СИ является джоуль на моль-Кельвин (Дж/моль·К).

Удельная теплоемкость связана с молярной соотношением

\(~C = cM. \)

В отличие от такой, например, характеристики вещества, как его молекулярная масса Mr удельная теплоемкость вещества не является неизменным параметром. Удельная теплоемкость может резко изменяться при переходе вещества из одного агрегатного состояния в другое. Так, вода в газообразном состоянии имеет удельную теплоемкость 2,2·103 Дж/кг·К а в жидком 4,19·103 Дж/кг·К .

Теплоемкость зависит и от условий, при которых происходит передача теплоты телу. Последнее особенно относится к газам. Например, при изотермическом расширении газа ему передается некоторое количество теплоты Q > 0, а ΔΤ = 0. Следовательно, удельная теплоемкость газа при изотермическом процессе

\(~c = \frac{Q}{m \Delta T} \to \infty .\)

При адиабатном сжатии (расширении) газ не получает теплоты и не передает ее окружающим телам (Q = 0), а температура газа изменяется (ΔΤ ≠ 0). Следовательно, удельная теплоемкость газа при адиабатном процессе

\(~c = \frac{Q}{m \Delta T} = 0 .\)

Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме или изохорной теплоемкостью (cV, CV), во втором — теплоемкостью при постоянном давлении или изобарной теплоемкостью (cp, Cp).

Если объем не изменяется (ΔV = 0), то работа, совершенная газом, так же равна нулю (А = 0). Согласно первому закону термодинамики

\(~Q = \Delta U\) и \(~C_{TV} = \frac{\Delta U}{\Delta T},\)

Откуда

\(~\Delta U = C_{TV} \cdot \Delta T = c_V m \Delta T . \qquad (2)\)

Следовательно, теплоемкость при постоянном объеме равна изменению внутренней энергии газа при изменении температуры на 1 К.

Если газ идеальный, то в формуле (2)

\(~\Delta U = \frac i2 \frac mM R \Delta T .\)

Тогда молярная теплоемкость при постоянном объеме \(~C_V = \frac{\Delta U_M}{\Delta T}\), где \(~\Delta U_M = \frac i2 R \Delta T\) — изменение внутренней энергии 1 моль газа. Из этих равенств теплоемкость газа при постоянном объеме — \(~C_{TV} = \frac i2 \frac mM R\); молярная теплоемкость газа при постоянном объеме — \(~C_V = \frac i2 R\).

Если газ нагревается при постоянном давлении, то согласно первому закону термодинамики

\(~Q = \Delta U + A,\)

где \(~A = p \Delta V = \frac mM R \Delta T\).

Тогда теплоемкость газа при постоянном давлении

\(~C_{Tp} = \frac{Q}{\Delta T} = \frac{\Delta U}{\Delta T} + \frac mM R = C_{TV} + \frac mM R = \frac{i + 2}{i} \frac mM R .\)

Молярная теплоемкость при постоянном давлении:

\(~C_p = C_V + R\) — уравнение Майера;

\(~C_p = \frac i2 R + R = \frac{i + 2}{i} R .\)

Таким образом, теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме. Их отношение равно

\(~\gamma = \frac{C_p}{C_V} = \frac{i + 2}{i} .\)

где γ — показатель адиабаты (коэффициент Пуассона).

Из-за малости величины коэффициента объемного расширения твердых и жидких тел работой, совершаемой ими при нагревании при постоянном давлении, можно пренебречь и считать, что теплоемкости при постоянном объеме и постоянном давлении практически совпадают. Поэтому теплоемкость твердых и жидких тел при заданной температуре может считаться вполне определенной величиной.

Литература

  • Артемов А. В. Физическая химия. — М.: Академия, 2013. — 288 с. — (Бакалавриат). — ISBN 978-5-7695-9550-9.
  • Ипполитов Е. Г., Артемов А. В., Батраков В.В. Физическая химия / Под ред. Е. Г. Ипполитова. — М.: Академия, 2005. — 448 с. — (Высшее профессиональное образование). — ISBN 978-5-7695-1456-6.
  • Лифшиц Е. М. // Физическая энциклопедия / Ред. А. М. Прохоров. — М.: Большая Советская Энциклопедия, 1992. — Т. 5. — С. 77–78.
  • Лифшиц Е. М. // Большая советская энциклопедия / Ред. А. М. Прохоров. — 3-е издание. — М.: Большая Советская Энциклопедия, 1976. — Т. 25. — С. 451.
  • Сивухин Д. В. Общий курс физики. — Издание 5-е, исправленное. — М.: Физматлит, 2006. — Т. II. Термодинамика и молекулярная физика. — 544 с. — ISBN 5-9221-0601-5.
  • // Большая российская энциклопедия. — М.: Большая российская энциклопедия, 2016. — Т. 32. — С. 54.

Изобарная и изохорная теплоемкость

В физике теплоемкостью называется количество теплоты, которое необходимо предоставить изучаемой системе, чтобы нагреть ее на один кельвин. Справедливо также и обратное определение, то есть теплоемкость — это количество теплоты, которое система выделяет при охлаждении на один кельвин.

Проще всего для системы определить изохорную теплоемкость. Под ней понимают теплоемкость при постоянном объеме. Поскольку система в таких условиях работу не совершает, то вся энергия расходуется на повышение внутренних энергетических запасов. Обозначим изохорную теплоемкость символом CV, тогда можно записать:

То есть изменение внутренней энергии системы прямо пропорционально изменению ее температуры. Если сравнить это выражение, с записанным в предыдущем пункте равенством, то приходим к формуле для CV в идеальном газе:

Данной величиной на практике неудобно пользоваться, поскольку она зависит от количества вещества в системе. Поэтому было введено понятие удельной изохорной теплоемкости, то есть величины, которую рассчитывают либо на 1 моль газа, либо на 1 кг. Обозначим первую величину символом CVn, вторую — символом CVm. Для них можно записать такие формулы:

Здесь M — молярная масса.

Изобарной называется теплоемкость при поддержании постоянного давления в системе. Примером такого процесса является расширение газа в цилиндре под поршнем при его нагревании. В отличие от изохорного, во время изобарного процесса подводимое к системе тепло расходуется на повышение внутренней энергии и на выполнение механической работы, то есть:

Энтальпия изобарного процесса представляет собой произведение изобарной теплоемкости на изменение температуры в системе, то есть:

Если рассмотреть расширение при постоянном давлении 1 моль газа, то первое начало термодинамики запишется в виде:

Последнее слагаемое получено из уравнения Клапейрона-Менделеева. Из этого равенства следует связь между изобарной и изохорной теплоемкостями:

Для идеального газа удельная молярная теплоемкость при постоянном давлении всегда больше соответствующей изохорной характеристики на величину R=8,314 Дж/(моль*К).

Идеальный газ

Идеальным называется такой газ, частицы которого считаются материальными точками, то есть не имеют размеров, но обладают массой, и у которого вся внутренняя энергия состоит исключительно из кинетической энергии движения молекул и атомов.

Любой реальный газ в идеале никогда не будет удовлетворять описанной модели, поскольку его частицы все же имеют некоторые линейные размеры и взаимодействуют между собой с помощью слабых ван-дер-ваальсовых связей или химических связей другого типа. Однако при низких давлениях и высоких температурах расстояния между молекулами велики, а их кинетическая энергия превышает потенциальную в десятки раз. Все это позволяет применять с высокой степенью точности идеальную модель для реальных газов.

Удельная и молярная теплоёмкость

Молярная теплоёмкость — теплоёмкость 1 моля вещества :

CM=Cν=1νδQΔT,{\displaystyle C_{M}={\frac {C}{\nu }}={\frac {1}{\nu }}{\frac {\delta Q}{\Delta T}},}

где ν=mM,{\displaystyle \nu =m/M,} m{\displaystyle m} — масса, M{\displaystyle M} — молярная масса вещества.

Теплоёмкость единичной массы вещества называется удельной теплоёмкостью и, в системе СИ, измеряется в Дж/(кг·К).

Формула расчёта удельной теплоёмкости:

c=CMM=δQmdT,{\displaystyle c={\frac {C_{M}}{M}}={\frac {\delta Q}{mdT}},}

где c — удельная теплоёмкость, m — масса нагреваемого (охлаждающегося) вещества.

Теплоемкость и ее виды

Согласно физическому определению, теплоемкость — это величина, показывающая, сколько нужно на систему затратить теплоты, чтобы ее нагреть на 1 градус Цельсия или на 1 кельвин. Поскольку процессы нагревания и охлаждения являются обратимыми, то при охлаждении системы на 1 градус выделяется количество теплоты, равное ее теплоемкости.

Как физическая величина теплоемкость может быть абсолютной, молярной или массовой. Определение абсолютной теплоемкости для произвольной системы было дано выше. Молярной называется теплоемкость на 1 моль газа, массовой — на 1 кг газа. Молярная величина чаще используется для рассматриваемого агрегатного состояния материи.

В зависимости от изопроцесса, при котором измеряют теплоемкость, она бывает изохорной и изобарной. В первом случае в системе с газом не изменяется объем, во втором случае сохраняется давление.

Виды теплопередачи

Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.

Теплопроводность

Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.

Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.

Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.

Конвекция

Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.

Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.

Излучение

Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.

Если мы греемся у камина, то получаем тепло конвекцией или излучением?

Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector